
Published online 23 April 2004

Stem cell biology and neurodegenerative disease

R. D. McKay
Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health,

Bethesda, MD 20892, USA (mckay@codon.nih.gov)

The fundamental basis of our work is that organs are generated by multipotent stem cells, whose properties
we must understand to control tissue assembly or repair. Central nervous system (CNS) stem cells are
now recognized as a well-defined population of precursors that differentiate into cells that are indisputably
neurons and glial cells. Work from our group played an important role in defining stem cells of the CNS.
Embryonic stem (ES) cells also differentiate to specific neuron and glial types through defined intermedi-
ates that are similar to the cellular precursors that normally occur in brain development. There is convin-
cing evidence that the differentiated progeny of ES cells and CNS stem cells show expected functions of
neurons and glia. Recent progress has been made on three fundamental developmental processes: (i) cell
cycle control; (ii) the control of cell fate; and (iii) early steps in neural differentiation. In addition, our
work on CNS stem cells has developed to a stage where there are clinical implications for Parkinson’s
and other degenerative disorders. These advances establish that stem cell biology contributes to our under-
standing of brain development and has great clinical promise.
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It has been many years since evidence was first obtained
for multipotent precursor cells in the vertebrate and
invertebrate nervous systems (Nieuwkoop 1952; Ready et
al. 1976; Le Douarin 1980). In our group, in vivo studies
were first used to identify CNS stem cells (Hockfield &
McKay 1985; Frederiksen & McKay 1988; Lendahl et al.
1990). Identification of the cell was rapidly followed by
evidence for the developmental plasticity of CNS stem
cells obtained by transplantation into ectopic sites in the
CNS (Frederiksen et al. 1988; Renfranz et al. 1991;
Brustle et al. 1995; Vicario-Abejon et al. 1995). The
potential of CNS stem cells expanded in vitro was also
defined (Temple 1989; Cattaneo & McKay 1990; Reyn-
olds & Weiss 1992; Davis & Temple 1994). The molecu-
lar mechanisms controlling CNS stem cell numbers and
fate choice are now the focus of work in many laboratories
using both in vivo and in vitro systems (Isaka et al. 1999;
Mitsuhashi et al. 2001; Sun et al. 2001; Hermanson et al.
2002; Petersen et al. 2002; Turnley et al. 2002).
During development, precursor cells in the nervous sys-
tem assume a positional identity within a spatial coordi-
nate system that has a dorsal–ventral, rostral–caudal and
left–right axis (Altmann & Brivanlou 2001). When these
cells subsequently undergo mitotic arrest they rapidly
acquire characteristics of a specific terminal fate. The dif-
ferentiation of stem cells in vitro shows that many of these
specific features occur in the absence of the precise organi-
zation that occurs in vivo. The self-organization shown
during stem cell differentiation raises the intriguing ques-
tion of how these concerted responses are achieved.

One contribution of 13 to a Discussion Meeting Issue ‘New directions in
tissue repair and regeneration’.
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We have used two different techniques to study the mol-
ecular basis of stem cell commitment. In the first
approach, we have studied the action of known morphog-
ens on stem cells in vitro and in vivo. We propose that the
morphogenic actions of BMPs on stem cell proliferation,
identity and terminal differentiation are achieved by a
feed-forward switch in receptors expressed by stem cells
(figure 1; Panchision et al. 2001).

In the second approach, we identified a new gene, NS,
that is expressed in stem cells in different tissues and regu-
lates the cell cycle (figure 2; Tsai & McKay 2002). This
work indicates that NS is part of a switch in the control
of p53 when proliferating stem cells transit into committed
progenitor cells. p53 regulates apoptosis and is mutated
in most human cancers (Bullock et al. 2000).

Evidence from our laboratory that stem cells can make
functionally mature progeny has contributed importantly
to the interest in these cells. Neurons are perhaps best
defined by their ability to form synapses. This is not a
simple cell-autonomous process, as interactions with
astrocytes are critical to synapse formation (figure 3;
Blondel et al. 2000; Collin et al. 2001; Mauch et al.
2001; Mozhayeva et al. 2002). In the presence of astro-
cytes, hippocampal stem cells from the foetal and adult
nervous system generate neurons with glutamat- and
GABA-ergic synapses (Vicario-Abejon et al. 2000; Song et
al. 2002). Behavioural and electrophysiological tests dem-
onstrate that functional dopaminergic neurons can also be
derived from expanded midbrain precursors (Studer et al.
1998) and from ES cells (Lee et al. 2000; Kim et al. 2002).
In addition, motor neurons (Wichterle et al. 2002) and
functional glia (Brustle et al. 1999) have been obtained
from ES cells. These experiments indicate that stem cells
expanded in vitro can differentiate to functional progeny
(figure 4).
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Figure 1. Bmpr-1b is expressed in the dorsal portion of Bmpr-1a expression domain and is induced by BMP2 and BMPR-1A
activation. (a) In situ hybridization for Bmpr-1a on wt embryos showing normal expression pattern during development; note
ubiquitous expression in proliferating ventricular zone and lack of expression in differentiated mantle layer. Dorsal–ventral axis
of neural tube is indicated by arrows. (b) In situ hybridization for Bmpr-1b on wt embryos showing normal expression pattern
during development; note that expression is restricted to dorsal proliferating neuroepithelium and is not expressed in post-
mitotic mantle layer. All images in (a,b) are from adjacent sections except for E15.5 sections. (c–e) Induction of Bmpr-1b
expression by BMP2 and caBmpr-1a. (c) Diagram showing isolation and culturing of E12.5 rat ventral midbrain stem cells.
(d ) rtPCR of E12.5 ventral midbrain stem cells showing induction of Bmpr-1b and Msx1 within 2–4 h of treatment with
5 ng ml–1 BMP2; Bmpr-1a and GAPDH expression are unchanged. (e) Induction of Bmpr-1b and Msx1 at 4 h is inhibited by
Shh (sonic hedgehog) co-treatment; inhibition of Shh by cyclopamine promotes induction of Bmpr-1b and Msx1. The
induction of Bmpr-1b is also seen with expression of activated Bmpr-1a constructs (not shown). Abbreviations: D, dorsal; V,
ventral; FB, forebrain; MB, midbrain; HB, hindbrain; SC, spinal cord; VZ, ventricular zone; ML, mantle layer; v.m., ventral
midbrain. Bar, 500 �m for E10.5 images in (a) and (b); bar, 500 �m for E12.5 and E15.5 images in (a) and (b). Data
reproduced from Panchision et al. (2001).
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Figure 2. NS identifies an early proliferating CNS precursor. (a) NS (red) co-expresses with S-phase cells as measured by
BrdU (bromodeoxy uridine) incorporation (green). CNTF (ciliary neurotrophic factor) treatment for 2 days downregulates NS
expression even while cells remain cycling; cell cycle arrest is seen by 8 days. (b) NS is expressed in early neural tube and is
downregulated by E12.5; by contrast, nestin and PCNA expression remains strong until E16.5–18.5. (c) NS interacts with
p53. Reproduced from Tsai & McKay (2002).
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Figure 3. VIP (vasoactive intestinal polypeptide) and ADNF (activity-dependent neurotrophic factor)-9 regulate synaptogenesis
in cultures of embryonic hippocampal neurons, whereas ADNF-9 and NT3 regulate NMDA receptor subunit expression.
(a) Two-week treatment of E16 cultures with 10�10 M VIP caused a marked increase in the level of synaptic connectivity.
(b) Two-week treatment with a VIP antiserum prevents the spontaneous formation of active synapses in E18 cultures, an
effect that is reversed by co-treatment with 10–9 M ADNF-9. (c) Expression of VIP by E18 hippocampal neurons in culture.
Cells were grown for 7 days, fixed and immunostained for the expression of VIP and NeuN. Magnification, ×63. The same
pattern was obtained after staining three independent cultures. (d) Dose–response effect on connectivity in E16 cultures
treated for one week with ADNF-9. ∗∗ p � 0.01; ∗∗∗ p � 0.001, t-test. Results are mean ± s.e.m. of 10–23 cells from at least
two independent cultures. DIV, days in vitro. (e–g) Expression of NMDA receptor subtypes by hippocampal neurons in
culture. Proteins from E18 (e) and E16 ( f ) hippocampal cultures were analysed by immunoblotting. The amount of each
receptor subunit was determined using antibodies specific to each subunit. In E18 neurons after two weeks in culture (e),
ADNF-14 AS (anti-serum) treatment resulted in a marked decrease in the expression of the NMDA receptor subunits NR2A
and NR2B when compared with control cells. This effect of ADNF-14 AS could be prevented by co-treatment with 10–8 M
ADNF-9 or 20 ng ml�1 NT-3. In E16 neurons after one week in culture ( f ), treatment with 10�9 M ADNF-9 or 20 ng ml�1

NT-3 resulted in a marked increase in NR2A and NR2B expression. (g) Expression levels of NT-3 were assayed in E16
cultures after one week in culture using a semiquantitative reverse transcription–PCR method. Treatments for 48 h with
10�9 M ADNF-9 or 20 ng ml�1 NT-3 failed to induce any significant changes in NR2A or NR2B mRNA levels. Amplification
of ribosomal RNA 18S was used as control. (h) Model for the development and control of synaptic activity by neurotrophins,
VIP and ADNF based on data from Vicario-Abejon et al. (2000) and Blondel et al. (2000).
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Figure 4. Dopamine neurons derived from ES cells function in an animal model of Parkinson’s disease. (a) (i) Immunoblot
analysis for transfected Nurr1 (HA), total Nurr1 and TH at stages 4 and 5. (ii) Differentiation of Nurr1-tranfected ES cells
into TH� (red) and serotonin� (green) neurons at stage 5. (iii) Nurr1 overexpression by anti-HA immnuostaining (red) at
stage 1 (DAPI, blue; TH, green; inset: co-localization of Nurr1 with DAPI at higher magnification). (b) Nurr1-expressing
stage four cells show markers of midbrain precursors; En1 co-localizes with Pax2 and Otx2. By contrast, few Bf1� (forebrain)
cells were En1�. After differentiation at stage 5, most TH� neurons express En-1. (c) a, wt- and Nurr1-ES cells were
differentiated using five-stage protocol. Generation of TH� and serotonin� neurons was measured at stage 5, day 10.
Generation of TH� neurons is enhanced in wt- and Nurr1-ES cells by Shh (sonic hedgehog) and FGF8 (fibroblast growth
factor 8) at stage 4. (ii) PLC quantification of dopamine release by stage 5 ES cells after depolarization in Hank’s balanced
salt solution (56 mM KCl) for 15 min. (d) Expression analysis of genes involved in midbrain neuron development and
function by RT-PCR in stage 5. Midbrain-specific genes Nurr1, Ptx3, En-1 and dopamine transporter (DAT) are expressed at
low levels in the absence of Nurr1 over-expression and Shh/FGF8 treatment at stage 4. (e) Nurr1-ES cells integrate into the
striatum of hemiparkinsonian rats. Diagram of single sections through a graft (‘G’) in the striatum (LV, lateral ventricle; AC,
anterior commissure). Single confocal images after immunohistochemistry for TH (red) are shown (i–vii) from regions marked
by red dots in the diagram. The distribution of cells and processes through the thickness of the section (35 �m) is shown by
the Z series displayed in green on the right. Note the many TH� processes extend away from the graft into the parenchyma
of the host striatum (iv–vii). Scale bar, 50 �m. ( f ) Behavioural effects of grafted Nurr1-ES cells. Analysis of amphetamine-
stimulated rotations in animals grafted with neurons derived from wt- (red triangles, n = 10) or Nurr1-ES cells (green squares,
n = 15) and sham controls (blue circles, n = 18). Reproduced from Kim et al. (2002).

There is increasing evidence for the replacement of
functional neurons from endogenous cells in the adult
CNS. In the dentate gyrus and olfactory bulb, neurogenesis

Phil. Trans. R. Soc. Lond. B (2004)

normally occurs at a significant rate (Fuchs & Gould
2000; Cameron & McKay 2001; Van Praag et al. 2002).
Endogenous cells may also replace neurons in the adult
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cortex, striatum and hippocampus after injury (Magavi et
al. 2000; Benraiss et al. 2001; Arvidsson et al. 2002; Naka-
tomi et al. 2002). Recent data suggest that endogenous
regenerative processes may also be present in the adult
substantia nigra (Zhao et al. 2003). Our growing under-
standing of neurogenesis suggests that in the future it may
be possible to stimulate neuron production in many sites
in the adult brain.

Interest in stem cells has been greatly stimulated by the
isolation of human ES cells and their potential use in cell-
based therapies (Thomson et al. 1998). Mouse ES cells
can be induced to generate many cell types including CNS
stem cells, haematopoietic stem cells, cardiomyocytes,
pancreatic islets and the cells of the vascular system
(Yamashita et al. 2000; Lumelsky et al. 2001; Lacaud et
al. 2002; Rideout et al. 2002). Human ES cells also gener-
ate neural fates (Reubinoff et al. 2000, 2001; Zhang et
al. 2001).

The rapid progress in understanding stem cell mech-
anisms argues that a powerful technology to manipulate
human ES cells will open many clinically significant paths.
Our own work has encouraged the idea that stem cell tech-
nologies might contribute to cell therapies for Parkinson’s
disease, multiple sclerosis and diabetes. Our understand-
ing of the basic biology of rodent CNS stem cells suggests
that human ES cells may also generate midbrain dopam-
ine neurons. Access to large numbers of human dopamine
neurons that can be manipulated will promote work by
many groups working on different aspects of Parkinson’s
disease. Their function can be assessed in striatal and nig-
ral grafts. Manipulation of dopaminergic behaviour by
grafted human dopamine neurons will provide a sound
technical basis for a technology that requires modification
before it can be successfully applied in the clinic (Freed
et al. 2001). The clinical significance of stem cell biology
is not restricted to cell replacement and we propose that
the ability of stem cell-derived dopamine neurons to form
synapses will define new mechanisms controlling dopam-
ine release and neuronal survival. Knowledge of the syn-
aptic and neurotrophic mechanisms of human midbrain
dopamine neurons has clear relevance to Parkinson’s
patients. This example illustrates the general importance
of stem cell biology for medicine.
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GLOSSARY

BMP: bone morphogenetic protein
CNS: central nervous system
ES: embryonic stem
NS: nucleostemin
TH: tyrosine hydroxylase
wt: wild-type
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